Fast Sweeping Algorithms for a Class of Hamilton-Jacobi Equations

نویسندگان

  • Yen-Hsi Richard Tsai
  • Li-Tien Cheng
  • Stanley Osher
  • Hongkai Zhao
چکیده

We derive a Godunov-type numerical flux for the class of strictly convex, homogeneous Hamiltonians that includes H(p; q) = pap2 + bq2 2 pq; 2 < ab: We combine our Godunov numerical fluxes with a simple GaussSeidel type iterations for solving the corresponding Hamilton-Jacobi Equations. The resulting algorithm is fast since it does not require a sorting strategy as does the fast marching method. In addition, it provides a way to compute solutions to a class of HJ equations for which the conventional fast marching method is not applicable. Our experiments indicate convergence after a few iterations, even in rather difficult cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A second order discontinuous Galerkin fast sweeping method for Eikonal equations

In this paper, we construct a second order fast sweeping method with a discontinuous Galerkin (DG) local solver for computing viscosity solutions of a class of static Hamilton-Jacobi equations, namely the Eikonal equations. Our piecewise linear DG local solver is built on a DG method developed recently [Y. Cheng and C.-W. Shu, A discontinuous Galerkin finite element method for directly solving ...

متن کامل

Fixed-point Fast Sweeping Weno Methods for Steady State Solution of Scalar Hyperbolic Conservation Laws

Fast sweeping methods were developed in the literature to efficiently solve static Hamilton-Jacobi equations. This class of methods utilize the Gauss-Seidel iterations and alternating sweeping strategy to achieve fast convergence rate. They take advantage of the properties of hyperbolic partial differential equations (PDEs) and try to cover a family of characteristics of the corresponding Hamil...

متن کامل

A Fast Sweeping Method for Static Convex Hamilton-Jacobi Equations

We develop a fast sweeping method for static Hamilton-Jacobi equations with convex Hamiltonians. Local solvers and fast sweeping strategies apply to structured and unstructured meshes. With causality correctly enforced during sweepings numerical evidence indicates that the fast sweeping method converges in a finite number of iterations independent of mesh size. Numerical examples validate both ...

متن کامل

A Stopping Criterion for Higher-order Sweeping Schemes for Static Hamilton-jacobi Equations

We propose an effective stopping criterion for higher-order fast sweeping schemes for static Hamilton-Jacobi equations based on ratios of three consecutive iterations. To design the new stopping criterion we analyze the convergence of the first-order Lax-Friedrichs sweeping scheme by using the theory of nonlinear iteration. In addition, we propose a fifth-order Weighted PowerENO sweeping scheme...

متن کامل

Two Semi-Lagrangian Fast Methods for Hamilton-Jacobi-Bellman Equations

In this paper we apply the Fast Iterative Method (FIM) for solving general Hamilton–Jacobi–Bellman (HJB) equations and we compare the results with an accelerated version of the Fast Sweeping Method (FSM). We find that FIM can be indeed used to solve HJB equations with no relevant modifications with respect to the original algorithm proposed for the eikonal equation, and that it overcomes FSM in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2003